首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24990篇
  免费   444篇
  国内免费   306篇
测绘学   716篇
大气科学   1790篇
地球物理   4750篇
地质学   8608篇
海洋学   2287篇
天文学   6233篇
综合类   51篇
自然地理   1305篇
  2021年   199篇
  2020年   237篇
  2019年   294篇
  2018年   605篇
  2017年   586篇
  2016年   724篇
  2015年   408篇
  2014年   695篇
  2013年   1299篇
  2012年   795篇
  2011年   1037篇
  2010年   952篇
  2009年   1253篇
  2008年   1126篇
  2007年   1151篇
  2006年   1124篇
  2005年   838篇
  2004年   835篇
  2003年   759篇
  2002年   714篇
  2001年   612篇
  2000年   604篇
  1999年   526篇
  1998年   522篇
  1997年   493篇
  1996年   366篇
  1995年   388篇
  1994年   402篇
  1993年   305篇
  1992年   302篇
  1991年   251篇
  1990年   302篇
  1989年   261篇
  1988年   243篇
  1987年   275篇
  1986年   228篇
  1985年   310篇
  1984年   334篇
  1983年   323篇
  1982年   310篇
  1981年   248篇
  1980年   266篇
  1979年   215篇
  1978年   205篇
  1977年   215篇
  1976年   177篇
  1975年   190篇
  1974年   176篇
  1973年   166篇
  1972年   114篇
排序方式: 共有10000条查询结果,搜索用时 19 毫秒
1.
Most source-to-sink studies typically focus on the dynamics of clastic sediments and consider erosion, transport and deposition of sediment particles as the sole contributors. Although often neglected, dissolved solids produced by weathering processes contribute significantly in the sedimentary dynamics of basins, supporting chemical and/or biological precipitation. Calcium ions are usually a major dissolved constituent of water drained through the watershed and may facilitate the precipitation of calcium carbonate when supersaturating conditions are reached. The high mobility of Ca2+ ions may cause outflow from an open system and consequently loss. In contrast, in closed basins, all dissolved (i.e. non-volatile) inputs converge at the lowest point of the basin. The endoreic Great Salt Lake basin constitutes an excellent natural laboratory to study the dynamics of calcium on a basin scale, from the erosion and transport through the watershed to the sink, including sedimentation in lake's waterbody. The current investigation focused on the Holocene epoch. Despite successive lake level fluctuations (amplitude around 10 m), the average water level seems to have not been affected by any significant long-term change (i.e. no increasing or decreasing trend, but fairly stable across the Holocene). Weathering of calcium-rich minerals in the watershed mobilizes Ca2+ ions that are transported by surface streams and subsurface flow to the Great Salt Lake (GSL). Monitoring data of these flows was corrected for recent anthropogenic activity (river management) and combined with direct precipitation (i.e. rain and snow) and atmospheric dust income into the lake, allowing estimating the amount of calcium delivered to the GSL. These values were then extrapolated through the Holocene period and compared to the estimated amount of calcium stored in GSL water column, porewater and sediments (using hydrochemical, mapping, coring and petrophysical estimates). The similar estimate of calcium delivered (4.88 Gt) and calcium stored (3.94 Gt) is consistent with the premise of the source-to-sink approach: a mass balance between eroded and transported compounds and the sinks. The amount of calcium deposited in the basin can therefore be predicted indirectly from the different inputs, which can be assessed with more confidence. When monitoring is unavailable (e.g. in the fossil record), the geodynamic context, the average lithology of the watershed and the bioclimatic classification of an endoreic basin are alternative properties that may be used to estimate the inputs. We show that this approach is sufficiently accurate to predict the amount of calcium captured in a basin and can be extended to the whole fossil record and inform on the storage of calcium.  相似文献   
2.
Understanding what drives farmers’ voluntary adoption of nutrient and soil best management practices has important consequences for many environmental outcomes including water quality. We build on research revealing the need for simultaneous use of multiple nitrogen best management practices to achieve water quality improvement goals. Using social, economic and attitudinal variables we predict the use of multiple nitrogen best management practices at three time points: current use (2013), past use (before 2013), and likelihood of use on their largest field in the next three years. Our empirical analysis uses structural equation modeling with latent variables and 2014 farmer survey data from three Midwestern US states. Most farmers in our sample used at least one of the six best management practices. Our results reveal that farmers’ attitudes, use of information sources, and conservation program participation affect the number of nitrogen best management practices concurrently in use at multiple time points.  相似文献   
3.
Bioeroding sponges belong to the most dominant bioeroders, significantly contributing to the erosion of coral reefs. Some species are tolerant or even benefit from environmental conditions such as ocean warming, acidification, and eutrophication. In consequence, increases in sponge bioerosion have been observed on some coral reefs over the last decades. The Abrolhos Bank is the largest coral reef system in the South Atlantic. It has been affected by sedimentation, eutrophication, overfishing, and climate change, mainly affecting coastal reefs, and at lesser intensity outer ones as well. This study aimed to describe spatial and temporal patterns in bioeroding sponge distribution in carbonate substrates in the Abrolhos Bank. Photo‐quadrats were used to compare bioeroding sponge abundance between two shallow reefs: a coastal, Pedra de Leste (PL), and an outer reef, Parcel dos Abrolhos (PAB). Each individual was delimitated over the substrate by determining the sponge surface through a line connecting the outermost papillae. The study was conducted over 6 years in 2008–2009 and 2013–2016. Four species of bioeroding sponges were identified: Cliona carteri Ridley, 1881, C. delitrix Pang, 1973, C. cf. schmidtii Ridley, 1881, and Siphonodictyon coralliphagum Rützler, 1971. The distribution and abundance of species varied between the inner and outer reefs and across the years, and displayed certain selectivity for the calcareous substrates recorded. Crustose coralline algae (CCA) were the main substrate excavated by the most abundant bioeroding species, C. carteri, and represented 70% of the substrate types occupied by this sponge (CCA, coral overgrown by CCA and plain coral). The highest abundance of bioeroding sponges observed in photo‐quadrats was 21.3 individuals/m2 at the outer reefs (PAB) in 2014. The abundances or areal extents of bioeroding sponges were up to 10 times greater on the outer reefs than on the coastal ones, where sedimentation is higher and more strongly influenced by siliciclastic material. Moreover, a higher herbivorous fish biomass has been reported on outer reefs which could also influence the higher abundance of bioeroding sponges in outer reefs. During the study period of 6 years, an increase in bioeroding sponge abundance was observed at the outer reefs (PAB), with the sea surface temperature increase. As CCA have an important role in reefal cementation and carbonate production in the Abrolhos reefs, a bioerosion impact might be expected, in particular, on the outer reefs.  相似文献   
4.
NASA's Genesis mission was flown to capture samples of the solar wind and return them to the Earth for measurement. The purpose of the mission was to determine the chemical and isotopic composition of the Sun with significantly better precision than known before. Abundance data are now available for noble gases, magnesium, sodium, calcium, potassium, aluminum, chromium, iron, and other elements. Here, we report abundance data for hydrogen in four solar wind regimes collected by the Genesis mission (bulk solar wind, interstream low‐energy wind, coronal hole high‐energy wind, and coronal mass ejections). The mission was not designed to collect hydrogen, and in order to measure it, we had to overcome a variety of technical problems, as described herein. The relative hydrogen fluences among the four regimes should be accurate to better than ±5–6%, and the absolute fluences should be accurate to ±10%. We use the data to investigate elemental fractionations due to the first ionization potential during acceleration of the solar wind. We also use our data, combined with regime data for neon and argon, to estimate the solar neon and argon abundances, elements that cannot be measured spectroscopically in the solar photosphere.  相似文献   
5.
6.
Emelyanova  T. A.  Lelikov  E. P.  Pugachev  A. A. 《Oceanology》2020,60(2):236-247
Oceanology - Abstract—The paper contains original data on the rock-forming and rare element compositions in the Pliocene–Holocene alkaline basaltoids of the Tsushima Basin Sea of Japan,...  相似文献   
7.
Thanks to the pioneering research of Paul Younger over the past 20 years, acid mine drainage in the UK has been recognized as a major environmental issue. Acid mine drainage and hydrous ferric oxide deposition are environmental hazards resulting from centuries of extensive coal mining activities across the UK. Oxidative weathering of pyrite in coal from spoil heaps and exposed bedrock can liberate trace elements, releasing them into local water systems. In addition to posing an environmental threat through water and ground contamination, ochres can also act as a remediation material, trapping elements such as selenium. Trace elements with a close association to iron oxides, such as selenium, may fix to the fine‐grained ochre materials, resulting in hyper‐enriched ochres. Selenium in coals has been known to cause an environmental issue in areas of North America but is also an important commodity for solar cells and nanotechnologies. Coal‐bearing areas of the UK, such as Northumberland, are known to contain a high selenium content, and coal‐derived ochres in these regions also contain significant selenium. The widespread occurrence of ochres in UK coal‐mining regions may therefore present a unique ‘E tech’ trace element source and prevent a toxicity problem for which they were once thought to be responsible.  相似文献   
8.
Sedimentological (line‐logging) analysis of two drill cores, FC77‐3 and FC67‐3, situated, respectively, in the northwestern and southeastern quadrants of the Flynn Creek impact structure's crater‐moat area reveals that the ~27 m thick crater moat‐filling breccia consists of three subequal parts. These parts, which were deposited during early modification stage of this marine‐target impact structure, are distinguished on the basis of vertical trends in sorting, grain size, and counts of clasts per meter in comparison with other well‐known marine‐target impact structures, namely Lockne, Tvären, and Chesapeake Bay. The lower part is interpreted to represent mainly slump deposits, and the middle part is interpreted to represent a stage intermediate between slump and marine resurge, that is, a traction flow driven by overriding suspension flow. The upper part (size graded, and relatively well sorted and fine grained) is interpreted to represent marine resurge flow only. The upper part is capped by a relatively thin and relatively fine‐grained calcarenite to calcisiltite deposit.  相似文献   
9.

At the present time, there is no generally accepted classification of the solar wind flows. There are various approaches to this problem depending on the goal of the study. In our paper, we propose the binary classification of the solar wind types by the main hydrodynamic parameters (velocity, temperature, and density) based on the statistical analysis of the solar wind. The analysis of the OMNIWeb one-minute data is performed for the period from 1996 to 2017, which encompasses solar cycle 23 and current solar cycle 24. Eight types of the solar wind are distinguished: fast-hot-dense, fast-hot-rarefied, fast-cold-dense, fast-cold-rarefied, slow-hot-dense, slow-hot-rarefied, slow-cold-dense, slow-cold-rarefied. These types occur with different frequency and are the consequences of different manifestations of solar activity. Of particular interest are the solar wind flows, the parameters of which deviate from the averages most significantly.

  相似文献   
10.
The mineralogy and geochemistry of Ceres, as constrained by Dawn's instruments, are broadly consistent with a carbonaceous chondrite (CM/CI) bulk composition. Differences explainable by Ceres’s more advanced alteration include the formation of Mg‐rich serpentine and ammoniated clay; a greater proportion of carbonate and lesser organic matter; amounts of magnetite, sulfide, and carbon that could act as spectral darkening agents; and partial fractionation of water ice and silicates in the interior and regolith. Ceres is not spectrally unique, but is similar to a few other C‐class asteroids, which may also have suffered extensive alteration. All these bodies are among the largest carbonaceous chondrite asteroids, and they orbit in the same part of the Main Belt. Thus, the degree of alteration is apparently related to the size of the body. Although the ammonia now incorporated into clay likely condensed in the outer nebula, we cannot presently determine whether Ceres itself formed in the outer solar system and migrated inward or was assembled within the Main Belt, along with other carbonaceous chondrite bodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号